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LYy Commissioning At A Glance

Commissioning begins at launch and is ~ 180 days long marked by the following key events:

1. Launch and Ascent - power positive, safe attitude, and communications established
2. Mid Course Correction - MCC1 (a and b) corrects launcher dispersions for proper L2 trajectory
3. Deployments a
4. Cool-Down/Cryo-Cooler Activation | Cool-Down/OTIS Phase
5. Mirror segment deploy and wave-front control
6. Science Instrument calibrations and checkout
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OTE in Overall Commissioning

JWST Timeline: Optical Telescope Element (OTE) Commissioning
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Mirror Segment alignment

https:/lwww.nasa.govifeature/goddard/2017/james-webb-space-telescope-s-laser-focused-sight





Cooldown Overview

Temperature (K)

e N C Bench

300

e NS Bench s NS FPA FGS Bench = e MIRI OM =~ s Cooler HSA e IR| Shield Min e NIR] Shield Max

I_ Phase1 |

Phase 2

| Phase 3 | Phase 4 | Phase 5

280

260

240

220

200

[y
=]
o

[E=Y
[=2]
(=]

[
I
Q

=
]
o

=
=]
(=]

co
o

60

40

20

\

\\N\\%\
-

10 20

SC Commissioning
Launch - L+30d

30 40 50 60 70 80 90 100
Day following Launch

ransifon OTE Commissioning EJ\
L+36d-L+124d =

.




mgn Water Contamination Risk

Instrument performance and thermal management
performance is reduced if too much moisture settles on
OTE or ISIM critical surfaces.

Critical surfaces include:
Fine Steering Mirror
Telescope optics
S| optics and detectors
NIRSpec microshutters
MIRI thermal shield
MIRI cryocooler lines
Sources of moisture could include:
ISIM Structure
Insulation
Warm regions of the core (though unlikely)

Water ice deposition onto critical IWST components post-launch presents a risk to achieving =
full performance of ISIM science measurements . -





Ice Contamination Risk Mitigation

® |n general, the approach on-orbit to mitigate this risk is to

® Ensure that the cooldown is as controlled as possible and all
sensitive surfaces remain warm until water-desorbing surfaces

(composites and blankets) cool below water-freeze out temperatures
(140K)

* Keep FSM warm until ice contamination has been precluded

® Ensure that the NIR Sls cool completely to operating temperature
and take early measurements evaluating the amount of ice collected
in the NIR Sl optic train and in the telescope optics. If the ice found
is within an acceptable range and not increasing, it will be safe to
drop the MIRI to its operating temperature and open the MIRI
Contamination Control Cover (CCC).

® The best mitigation plan to minimize ice contamination is
prevention, since Sl decontamination warm-up would lead to only
partial results, could make the contamination state worse, could

carry unknown and untested risks, and would be a time-inte| —
operation -_J\'





Ice Monitoring

NIRCam Ice Because FSM cannot be
" Monltorlntg 5 decontaminated:
easurements 1- Mitigate FSM contamination risk

by taking ice measurements
before the FSM gets cold.

Monitor for any ice accumulation
throughout cooldown
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Ice Monitoring: Data analysis

OTE scale=0.80; NIRCam scale=0.80
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Science Instruments in Overall Commissioning

JWST Timeline: Science Instrument (SI) Commissioning
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mgn Background Characterization

® |n many modes (NIR broadband imaging, long wavelength MIRI), the
background contributors are dominant over the detector noise terms --
hence, an important part of commissioning is assessing the various
contributors to the background
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mun Background Characterization

Use on-sky observations to characterize the stray light
behavior, which will be used to 1) evaluate the JWST
Backgrounds Tool for systematic offsets or anomalies and 2)
trend any evolution to the stray light behavior.

During commissioning, we will use pointed observations at
important fields and attitudes, using a compliment of filters with
broad wavelength coverage.

I NIRCam + MIRI measurements at 8 selected fields, including
stressing cases chosen to evaluate the extremes of the
background model and key scientific fields.

I MIRI measurements at extremes of the field of regard (“hot
attitude” and “cold attitude”) to characterize the thermal
background performance of the Observatory

Contingency commissioning observations could include

additional pointed observations or a request for expanded filter
imaging following planned science instrument commissioni| _
activities. =)





msa Background Characterization

® The out-of-field sky background scattered into the JWST beam is characterized
by the Radiance Transfer Function (see Lightsey and Bowers, Proc. SPIE 10398,
103980L, 2017)

® The predicted scatter contribution to the background is the convolution of the sky
background (zodi + Milky Way) with this susceptibility map; the telescope line of
sight is at (azimuth, elevation) = (0,90) on this plot

Radiance Transfer Function in observatory coordinates
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YY) Pointings
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Background Characterization
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WY Proposed Filter Usage
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NAEA Sensitivity Expected Outcomes & Contingencies

® Throughput

Expectation is that we will simply update our planning tools (e.g., Exposure
Time Calculator [ETC]), as standard star fluxes are known more accurately
than our current throughput uncertainty from ground measurements

There is an early throughput contingency regarding unexpected levels of ice
accumulation. Unlikely to have remedial actions available at the time we’re
taking standard star measurements.

® Backgrounds

Expectation again is that we may need to update our planning tools — JWST
Background Model, ETC — for deviations from current predictions

Current predictions are thought to be conservative; e.qg., predicted Beginning-
of-Life temperatures are somewhat cooler than what is used in current tools

Monitoring of background over the commissioning program could potentially
reveal an issue with higher background near the edge of the Field of Regard
—again, NOT expected, but in principle could impose operational restrictions

=)
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mgn Thermal State Dependance on Pointing

+5°: hot pitch

i
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®* The JWST science field of regard is +5 to -45
degrees in pitch and +/- 5 degrees in roll.

®* Normal science observations will be
carried out at various pointings
within the field of regard (FOR),
smoothing over the thermal state
extremes to some extent.

®* Momentum unloads (MUs) are nominally
executed at a pitch of 0 and -44 degrees and
station keeping maneuvers (SK) are at
pitches between 0 and -53 degrees.

® MU and SK can be carried out at
either the hot or cold attitudes.
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mm Thermal Slew: Star Tracker Thermal Response
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mgn Known Optical Drifts from Thermal Changes

* Design drifts: When a large slew in pitch (i.e., toward or away from the sun) is made,
thermal changes on the spacecraft and OTE contribute to optical stability changes.

® Pointing stability: from thermal changes to the star tracker assembly and OTE which
affect the relative coordinates, resulting in a roll about the boresight (i.e., not sensed
or corrected by the fine guidance sensor loop).

® OTE thermal distortion: from structural displacements to the OTE backplane and
secondary mirror motion, resulting in a change in the wavefront error.

® As-built drifts: During cryovacuum testing, three additional instabilities were observed.

* |EC cyclic wavefront drifts: from the IEC radiator panel heater turn on/off which
coupled into the backplane through the harness, much of which was attributed to the
GSE IEC support. This is not reliant on a thermal slew.

* Frill & PMSA close-out thermal distortion: from frill and PMSA installations that did
not have the requisite slack to operate across the OTE temperature range without
imparting forces on the backplane. Inspections and rework completed to add slack to
much of the frill and PMSA close-outs, reducing the expected drifts in flight.

®* PMSA tilt events: unpredictable tilt events, likely due to backplane stress relief from
the structural cooldown to operational temperatures. Several events were identified
during OTIS cryo-stable but had plausible non-flight contributors. Data monitors have
been developed to detect tilt events during observations (e.g., with FGS) or at the 2-
day WF monitoring observations. They are not expected to be induced by the small
temperature changes from a thermal slew.

2(




mun Thermal Stability Characterization

After the Observatory reaches operational temperatures, there are several
activities where the hot and the cold pointings have been grouped together to
provide:

® A stable hot period

* Asingle slew to coldest pointing

® A stable period in the cold pointing

In these periods, we will characterize the flight optical stability performance by
measuring:

® Pointing stability
®* OTE Thermal Distortion
® cyclic wavefront drifts

® Frill and Primary Mirror Segment Assembly (PMSA) closeout thermal
distortion

® Check for unknown drifts for the as-flown Observatory over critical
science timescales prior to critical science instrument commissioning
measurements

2




Objectives: Measure and characterize the JWST thermal profile to 1) validate observatory thermal
models and 2) determine WFSC update expectations.

All thermal stability measurements take ~4.6 days over a 20 day time period (WF monitoring
activities have been absorbed in the new measurement). The additional time is filled with
other commissioning activities on a non-thermal interference basis.

CVZ
pitch=-5° _ : i iR
85°tosun piichs 149 :
p : N 135°to sun :
“Hot” attitude : : :

“cold” attitude /

CVZ
pitch=-5° 3
85° to sun

“Hot” attitude

Stabilize at Hot attitude Slew to Cold attitude Return to Hot attitude
Assess |IEC cyclic wavefront or Assess frill/PMSA/OTE Verify consistency with prior
other short timescale drifts and wavefront drifts and pointing hot to cold pointing stability
establish warm stable baseline stability over 14 days.

performance for pointing and
wavefront stability.

Observables: telemetry data from the observatory, heater sensors, image quality evolution,
transient behaviors ,



Thermal Stability Characterization Flow

L+132 to L+137 (~4 days thermal settling + ~0.75 days of activities)

819-6

819-1
Slew to Hot and

819-2
Wavefront
Maintenance

Thermally Stabilize

Executing other CARs!

> 4 days

Slew to Cold Attitude
-40 +/- 5 deg pitch
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FrillPMSA/OTE TD &
Pointing Stability

Frill: Continuous NIRCam
SW weak lenses with +/- 8
waves only (15 min samp)
Roll Stability: NIRCam LW

3 hours

NIRCam Single-
Field Monitor

2.8 hours

CP/CAM to Cold
Attitude

Executing other CARs!

2 hours

811-2
FrillPMSA/OTE TD
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Continuous NIRCam
SW
weak lens sequences
with full WL suite (25
min samp)

Roll Stability: NIRCam
LW

21 hours

L+152 (0.1 days)

819-3
Pointing stability
baseline

NIRCam NIRISS

3 hours (6.5 min
samp)

Complete Analysis and
CP Preparation

Executing other CARs!

6 hours

NIRCam repeat

Multi-Field + 5 days
LOS Monitor

12 hours

Slew to Hot Attitude (_
(0 +/- 5 deg pitch)

819-7
Pointing Stability

NIRCam NIRISS

3 hours (6.5 min samp)

819-4 819-5
IEC cyclic drifts OTETD
NIRCam Internal
Phase Retrieval (IPR) -

NIRCam fast weak
HOT

lens

2 hours (8.6 s
samp)

0.9 hours

OTETD

NIRCam Multi-Field
Monitor + LOS
Monitor

12 hours

L+138 to L+152 (~4 days of activities)

811-4.[1-9]
OTE TD

NIRCam NIRCam repeat

Single-Field D Multi-Field  dave
+LOS Monitor + Y

Monitor LOS Monitor

1.4 hours 12 hours

CP/CAM to Hot Attitude

Executing other CARs!

2 hours

Contingency 819-8b
FrillPMSA/OTE TD & Pointing
Stability

Frill: Continuous NIRCam SW weak
lenses with +/- 8 waves only (15 min

samp)
Roll Stability: NIRCam LW

3 hours

811-4.[10-

NIRCam

single-Field > 2 NIRCamIPR Ded  Multi-Field
Monitor +

+LOS
Monitor LOS Monitor

1.4 hours 0.9 hours 12 hours

Complete Analysis and
CP Preparation

Executing other CARs!

6 hours

Analysis & End Thermal
Preparation Slew

Executing
other CARs!





Ut Summary and Conclusions

JWST Commissioning is a careful process designed to optimize observatory
performance and science operations

Spacecraft, OTE and SI commissioning build on one another for an iterative process

Observatory Commissioning captures activities involving coordination of multiple
systems:

* Ice Monitoring
* Ensures sensitive optical surfaces are free from water ice
* Starts before FSM heater turns off, continues throughout OTE
commissioning
* Carefully coordinated with wavefront team
* Stray Light
* Assesses Stray Light and Background models
* Includes stressing pointings, regions of interest and benchmark locations
* Thermal Stability Characterization
* Assesses the thermal and pointing stability of the telescope during and after
a large change in thermal profile
* 4 Days stabilization at Hot attitude, slew 45 degrees to cold attitude, remains
14 days at ‘cold’ attitude, returns to hot attitude
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